

HOT-DIP GALVANIZED

USIMINAS 🕖

INDEX Complete Solutions in Steel 7 HOT DIP GALVANIZED STEEL (HDG) 9 11 Post-treatment **13** Production Process Commercial Quality Steel 15 Stamping Steel 17 Bake Hardening Steel 23 Medium-Strength Steel 27 Rephosphorized Medium-Strength Steel 29 Microalloyed Medium- and High-Strength Steel 33 Dual Phase Steel 35 General Information on Sale Order 37 Useful Information on Usage 38

services.

They are innovative steels, developed in line with market trends, from Usiminas' historical vocation to technological research.

As the base of everything, a team trained to make steel more than a product, a solution.

COMPLETE **SOLUTIONS IN STEEL**

WHEN THE STEEL IS FROM USIMINAS, **QUALITY COMES FIRST.**

Usiminas is a leading producer of flat steel in the Americas. There are units in six states of the country working on an integrated basis to deliver differentiated products and

A broad portfolio – from plates to coated steel - adds value to various strategic sectors of the economy, such as automotive, marine, oil and gas, civil construction, machinery and equipment, white goods, distribution, among others.

In the segment of Heavy Plates, Usiminas has production lines with the use of controlled rolling and thermal treatment, and of controlled rolling and accelerated cooling. These combinations produce quality steel at different levels of mechanical strength

HOT-DIP (HDG)

• **Usigal-GI**[®] – pure zinc coating;

• Usigal-GA[®] – zinc-iron coating.

HDG pure zinc-coated coils and plates, Usigal-GI®, and the zinciron coated alloys, Usigal-GA[®], may be supplied with coating according to domestic and international standards. Usigal-GI® steels may be supplied with metallic coating mass, the sum of both sides, ranging from 80 g/m2 to 600 g/m2. These products can also be supplied with differentiated zinc coating per side, subject to prior consultation to Usiminas. Usigal-GA[®] steels are supplied with metallic coating weight, the sum of both sides, ranging from 60 g/m2 to 140 g/m².

GALVANIZED STEEL

Hot-dip galvanized steels, also known as HDG, are produced in partnership with Unigal Usiminas, a joint venture created in 1999 between Usiminas and the Japanese company Nippon Steel & Sumitomo Metal Corporation. These products are characterized by their excellent atmospheric corrosion resistance. The coating types available are:

HDG material are available with product thickness ranging from 0.40 mm to 3.00 mm and widths from 750 mm to 1,830 mm.

HDG steels, due to their excellent surface characteristics, are used in several segments, mainly the automotive one. These products are used for applications requiring high drawability, good weldability and pre-painting surface treatment.

CHEMICAL TREATMENT

Hot-dip galvanized steel, regardless of the type of coating, can be supplied with conventional chemical treatment, which increases its atmospheric corrosion resistance. Chemically treated Usigal-GI® is preferably indicated for those applications in which the material is used without painting. Such products are normally supplied without oiling, but can be supplied oiled, subject to prior consultation.

"L"TREATMENT

forming range.

PHOSPHATIZATION

wheel wells, and car floors.

STANDARDS AND SPECIFICATIONS

Usiminas supplies materials in accordance with international or specific standards for each customer, with the most commercialized one being:

Usiminas
American Society for Testing and Materials
European Standard
Japanese Industrial Standard
Brazilian Standard
Society of Automotive Engineers

POST TREATMENT Usiminas sells HDG steels with three types of treatment:

"L" treatment is the application of a lubricant film especially developed for use in the production process of automotive parts. The product is only supplied oiled, and indicated for manufacture of external panels, internal door panels, wheel wells and floorings of vehicles. The L-treated steels have benefits such as excellent drawability, facility of removal with acid phosphatizing solution, and possibility of expansion of the

Similar to the L treatment, the process of phosphatization is also indicated in parts with critical drawing, such as external sides, panels,

This catalogue describes hotdip electrogalvanized (galvanized) steel with its chemical and mechanical characteristics, produced according to Usiminas' specifications, and national and international standards. However, the catalogue brings only basic information of the standards, which are not sufficient to completely describe the product. Thus, Customer detailing is necessary when opting for one of them.

1 FULL HARD COILS

Hot-dip galvanization uses full hard coils as raw material, that is, only cool rolled steels, with no annealing or bake hardening.

5 GALVANNEALING FURNACE

It is a heat treatment furnace used for GA coating formation, that is formed by zinc-iron alloy.

PRODUCTION FLOW – HOT-DIP **GALVANIZED STEEL**

MÁOUINA DE SOLDA

² CLEANING SESSION

Process that includes electrolytic and mechanical cleaning, through brushing, a preparation for allowing perfect adherence of the coil coating..

ACCUMULATORS

³ ANNEALING

When the material is rolled, it gets extremely resistant. The annealing process consists of heat treatment for recovery of material mechanical properties, making it suitable for application in several segments..

4 ZINC POT

The cool rolled coil is immersed in a molten zinc tank that adheres to the plate surface. This zinc layer protects the material against atmospheric corrosion.

⁶ BAKE HARDENING

ACCUMULATORS

Process providing adequacy of steel mechanical properties. In addition, it also brings improvement regarding shape and gives roughness to the band.

⁸ SHEARS

They trim the edges and sections the coil to reach the dimensions requested by the customer.

9 ONLINE INSPECTION

In this stage, the inspection and checking of the requests made by the customer are performed.

7 POST-TREATMENT

In this process, there is the possibility of applying a layer of L treatment or phosphate over the zinc layer that helps in the stages of stamping and painting, or chemical treatment, which enhances the resistance against atmospheric corrosion.

FINAL PRODUCT HOT-DIP GALVANIZED COIL

Hot-dip galvanized coil: it has great resistance against atmospheric corrosion. Its dimensions are defined according to the customer request. This steel is much used by automobile manufacturers.

COMMERCIAL QUALITY STEEL

HDG commercial quality steel is supplied with guarantee of chemical composition, with other guarantees being met on prior request. Such materials are indicated for general folding, being used in structural parts of low formation requirements in the sectors of civil construction, pipes, white goods, and general use.

						Chemical Com	position (% p/p)					M	echanical Propertie			
Standard	Grade	Coatin	Thickness Range							Tensile				Elongation		Hardnorg
			(mm)	С	Mn	AI	Р	S	Others	Test Direction	YS (MPa)	LR (MPa)	Thickness (mm)	GL (mm)	% min.	(HRB)
Usiminas (USI)	USIGAL-GI-CF01 USIGAL-GA-CF01 USIGAL-GI-QC45 USIGAL-GA-QC45	GI GA GI GA	0.40 ~ 3.00	0.12 max.	0.60 max.	0.005 min.	0.060 max.	0.035 max.	-	-	-	-	-	-	-	- 45 ~ 60
	CS-A (1) (2) (7)			0.10 max.					Cu: 0.25 max. Ni: 0.20 max.		170 ~ 380					
ASTM A653	CS-B (1) (7)	GI / GA	0.40 ~ 3.00	0.02 ~ 0.015	0.60 max.	(3)	0.030 max.	0.035 max.	Cr: 0.15 max. Mo: 0.06 max. V: 0.008 max. Nh: 0.008 max	Longitudinal	205 ~ 380	-	-	50	20	-
	CS-C (1) (2) (7)			0.08 max.			0.100 max.		Ti: 0.025 max. (4)		170 ~ 410				15	
	DX51D+Z	GI														
EN 10346	DX51D+ZF	GA	0.40 ~ 3.00	0.18 max.	1.20 max.	-	0.120 max.	0.045 max.	Si: 0.50 max. Ti: 0.300 max.	Transversal	-	270 ~ 500	(8)	80	(8)	-
JIS G 3302	SGCC	GI / GA	0.40 ~ 3.00	0.15 max.	0.80 max.	-	0.050 max.	0.050 max.			-		(8)	80	(8)	
SAE J2329	CR1	GI / GA	0.40 ~ 3.00	0.13 max.	0.60 max.	-	0.035 max.	0.035 max.	-	-	-	-	-	-	-	-
NBR 7008	ZC	GI / GA	0.40 ~ 3.00	0.15 max.	0.60 max.	(5)	0.040 max.	0.040 max.	-	-	-	-	-	-	_	-

- (1) There is no specification for the Al, N, and B elements; however, their results may be reported.
 (2) For C contents ≤ 0.02% p/p, V, Nb, or Ti, or combinations of these, can be used as stabilizing elements. In these cases, the maximum limit for the V and Nb content sum is 0.100% p/p and for Ti, 0.150% p/p.
 (3) When the application requires aluminum-killed steel, the grade may be manufactured with a minimum 0.010% p/p Al content.
 (4) For steels with C equal to or greater than 0.02% p/p, the maximum Ti content must be the lower value of 0.025% p/p or calculated by the formula 3.4N + 1.5S.

(6) For products with thickness lower than 0.70mm and/or special flatness, the elongation value can reach two units below the table value.
 (7) For the ASTMA 653 standard, the mechanical properties shown are not mandatory. The values are provided to guide the customer in specifying the suitable steel for a given application. Values outside these ranges may occur. The customer can, if necessary for the application, negotiate with Usiminas a

(8) For thicknesses ≤ 0.50 mm, a 18% minimum elongation. Thicknesses between $0.50 < AND \leq 0.70$ mm, a 20% minimum elongation. Thicknesses greater than 0.70 mm, a 22% minimum elongation.

(5) No specified value. However, the values found must appear on the certificate of analysis.

DRAWING STEEL

HDG drawing steel carries the guarantee of mechanical properties, with the yield strength (YS), tensile strength (TS) and elongation (E) being specified. For steel with greater drawing requirements, minimum anisotropy (r) and strain hardening coefficient (n) values are specified.

The application of this steel is indicated for medium to extra-critical drawing processes, where the characteristics of strength, rigidity and ductility are required. Normally, they are used by the automotive, white goods, and civil construction industries. They may be supplied with low or ultra-low carbon.

						Chemic	al Composition ((% p/p)					Me	chanical Proper	rties		
Standard	Grade	Coating	Thickness							Toncilo Toct				Elongation			
		B	Range (mm)	С	Mn	Al	Р	S	Other	Direction	YS (MPa)	TS (MPa)	Thickness (mm)	MB (mm)	% mln.	r	n
	USIGAL-GI-ST02 USIGAL-GA-ST02	GI GA	0.40 ~ 2.30	0.12 max.	0.50 max.		0.040 max.				140 ~ 300	270 ~ 420			32 -32		
Lisiminas (LISI)	USIGAL-GI-ST03 USIGAL-GA-ST03	GI GA		0.08 max.	0.45 max.	0.005 min	0.030 max.	0.030 max.	-	Transversal	140 ~ 220	270 ~ 370	_	50	-34 -34	(13)	(12)
USITI (USI)	USIGAL-GI-ST04 USIGAL-GA-ST04	GI GA	0.60 ~ 2.30	0.06 max.	0.35 max.	0.005 mm.	0.025 max.	0.020 max.	Ti: 0.600 max.	Tansversar	120 ~ 200	270 ~ 350		50	37	(13)	(13)
	USIGAL-GI-ST05	GI GA		0.02 max.			0.020 max.		ND: 0.500 max.		120 ~ 180	270 ~ 350			39		
	FS-A (1) (12) FS-B (1) (12)		0.40 ~ 2.30	0.10 max. 		(14)	0.020 max.	0.035 max. 0.030 max.	Cu: 0.25 max. Ni: 0.20 max. Cr: 0.15 max. Mo: 0.06 max. V: 0.008 max.		170 ~ 310				26	1.0 ~ 1.4 (4)	0.17~0.21(4)
ASTM A653	DDS-A (1) (12) DDS-C (1) (12)	GI / GA	0.60 ~ 2.30	0.06 max.	0.50 max.	0.010 min.	0.020 ~ 0.100	0.025 max. 0.025 max.	Nb: 0.008 max. Ti: 0.025 max. (2)	Longitudinal	140 ~ 240 170 ~ 280	-	-	50	32	1.0 ~ 1.8 (4) 1.2 ~ 1.8 (4)	0.19 ~ 0.24 (4) 0.17 ~ 0.24 (4)
	EDDS (1) (12)			0.02 max.	0.40 max.		0.020 max.	0.020 max.	(3)		105 ~ 170				40	1.6 ~ 2.1(4)	0.22 ~ 0.27 (4)

						Chemio	al Composition	(% p/p)					Ме	chanical Proper	ties		
Standard	Grade	Coating	Thickness							Tancila Tact				Elongation			
			Range (mm)	с	Mn	AI	Р	S	Other	Direction	YS (MPa)	TS (MPa)	Thickness (mm)	MB (mm)	% mln.	r	n
	DX52+Z	GI	0 40 ~ 2 30								140 ~ 300	270 ~ 420			26		
	DX52+ZF	GA														_	_
	DX53+Z	GI									140 ~ 260	270 ~ 380			30		
51140246	DX53+ZF	GA							Si: 0.500 max.				(=)				
EN 10346	DX54+Z	GI	0.00.000	0.12 max.	0.60 max.	-	0.100 max.	0.045 max.	Ti: 0.300 max.	Iransversal	120 ~ 220	260 ~ 350	(5)	80	36	1.6 min. (6) (7)	0.18 min. (6)
	DX54+ZF	GA	0.60 ~ 2.30												34	1.4 min. (6) (7)	0.18 min. (6)
	DX56+Z	GI									120~180	260 ~ 350			39	1.9 min. (6) (7)	0.21 min. (6)
	DX56+ZF	GA									120 100	200 350			37	1.7 min. (6) (7) (8)	0.20 min. (6) (8)
		*****											0.40 ≤ E < 0.60		34		
	CCD1		0.40 2.20	0.12 may	0.00		0.040 may	0.040					0.60 ≤ E < 1.00		36		
	SGCDI		0.40~2.30 0	0.12 max.	0.60 max.		0.040 max.	0.040 max.					1.00 ≤ E < 1.60		37		
													1.60 ≤ E < 2.30		38		
			0		.0 max.								0.60 ≤ E < 1.00		38		
	SGCD2			0.10 max.		-							1.00 ≤ E < 1.60		39		
JIS G3302		GI / GA							-	Longitudinal	l - 270 min.	270 min.	1.60 ≤ E < 2.30	50	40	-	-
													0.60 ≤ E < 1.00		40		
	SGCD3		0.60 ~ 2.30	0.08 max.	0.45 max.		0.030 max.	0.030 max.					1.00 ≤ E < 1.60		41		
													1.60 ≤ E < 2.30		42		
													0.60 ≤ E < 100		42		
	SGCD4			0.06 max.									1.00 ≤ E < 160		43		
													1.60 ≤ E < 2.30		44		
	ZE		0.40 ~ 2.30	0.10 max.		(9)		0.030 max.	-		140 ~ 300	420 max.			26		
	ZEE Grau 1			0.08 max.	0.45 max.		0.030 max.				140 ~ 260	380 max.			31		
NBR 7008	ZEE Grau 2	GI / GA		0.08 max.	x.				(10)	Transversal	140 ~ 220	350 max.	(11)	50	37	-	-
	ZEE Grau 3		0.60 ~ 2.30	0.01 max.		0.010 min.		0.020 max.	(10)		140 ~ 200	200 350 max.			40		
	ZEE Grau 4		0.60~2.30	0.01 max.	0.30 max.	x. 0.020 max. 0.				120~180	350 max.			40			

(1) There is no specification for the N and B elements; however, their results may be reported.
 (2) For steels with C equal to or greater than 0.02% p/p, the maximum Ti content must be the lower value of 0.025% p/p or calculated by the formula 3.4N + 1.5S.
 (3) Maximum specified contents (% p/p): Cu: 0,25/ Ni: 0,20/ Cr: 0.15/ Mo: 0,06/ V: 0.10/ Nb: 0.10/ Ti: 0,15.
 (4) Average value performed in three directions.

(5) For materials with a thickness between 0.50 < AND < 0.70mm, the minimum elongation must be reduced by 2 units. For a thickness < 0.50mm, the reduction shall be by 4 units. (6) Value measured in the transverse direction.

(7) For thicknesses > 1.50mm, the r value must be reduced by 0.2 unit.

(8) For a thickness \leq 0.70mm, the r value must be reduced by 0.2 unit and the n value, by 0.01 unit.

(9) No specified value. However, the value found must appear on the certificate of analysis.
(10) Such chemical elements as P, Nb, Ti, and V can be added alone or in combination.
(11) For products with thickness lower than 0.70mm and/or special flatness, the elongation value can reach two units below the table value.
(12) For the ASTMA 653 standard, the mechanical properties shown are not mandatory. The values are provided to guide the customer in specifying the suitable steel for a given application. Values outside these ranges may occur. The customer can, if necessary for the application, negotiate with Usiminas a narrower range.
(13) It can be guaranteed upon request.

(14) There is no specification for the Al chemical element; however, its result must be reported.

BAKE HARDENING STEEL

This class of steel has as its main characteristics the Bake hardening steel is applied in the automotive industry, increased mechanical strength obtained after paint baking mainly in closing panels, such as hood, doors, trunk lid and (range from 100°C to 200°C), due to strain hardening. It for fenders, providing good indenting resistance to those also has a medium to deep drawing characteristics. panels, even when submitted to low drawing levels, which is one of the characteristics of these parts.

				Chemical Composition (% p/p)							Mechanical Properties							
Standard	Grade	Coating	Thickness							Toncilo Toct				Elongatio	า			Min value
		8	Range (mm)	С	Mn	Al	Р	S	Other	Direction	YS (MPa)	TS (MPa)	Thickness (mm)	MB (mm)	% mln.	r	n	BH (MPa)
Liciminas (LISI)	USIGAL-GI-BH180 USIGAL-GA-BH180	GI GA	0.60 ~ 2.30	0.05 max.	0.80 min.	0.05min.	0.060 max.	0.025 may	Nb: 0.500 max. Ti: 0.600 max.	Transversal	180~240	300 ~ 380	-	50	32 -32	(8)	(8)	30
	USIGAL-GI-BH220 USIGAL-GA-BH220	GI GA	0.00 2.50	0.10 max.	0.70 max.	0.120 max.	0.080 max.	0.025 max.	Nb: 0.090 max. Ti: 0.120 max.	mansversar	220 ~ 280	320 ~ 400	-		-30 -30			
ASTM A 653	BHS 180 (1) BHS 210 (1) BHS 240 (1)	GI / GA	0.60 ~ 2.30	0.12 max.	150 max.	-	0.120 max.	0.030 max.	Cu: 0.200 max. Ni: 0.200 max. Cr: 0.150 max. Mo: 0.060 max. V: 0.008 max. (2) Nb: 0.008 max. (2) Ti: 0.008 max. (2) (3)	Longitudinal	180 min. 210 min. 240 min.	300 min. 320 min. 340 min.	-	50	30 28 24	-	-	20
EN 10346	HX180BD+Z HX180BD+ZF HX220BD+Z HX220BD+ZF	GI GA GI GA	0.60 ~ 2.30	0.10 max.	0.70 max.	0.100 max.	0.060 max. 0.080 max.	0.025 max.	Si: 0.50 max. Nb: 0.090 max. Ti: 0.120 max.	Transversal	180 ~ 240 220 ~ 280	290 ~ 360 320 ~ 400	(4)	80	34 32 32 30	1.5 min. (5) (6) 1.3 min. (5) (6) 1.2 min. (5) (6) 1.0 min. (5) (6)	0.16 min. (5) 0.15 min. (5)	35
SAE J 2340	180B 210B	GI / GA	0.60 ~ 2.30	0.01 max.	-	-	0.050 max.	0.015 max.	B: 0.0010 max. Cu: 0.200 max. Ni: 0.200 max. Cr: 0.150 max. Mo: 0.060 max.	Longitudinal	180 min.	300 min. 320 min.	-	50	-	-	0.19 min. (7) 0.17 min. (7)	245 (9)

(1) There is no specification for the Al, Si, and N elements; however, their contents must be reported.
 (2) For C contents ≤ 0.02% p/p, V, Nb, or Ti, or combinations of these, can be used as stabilizing elements. In these cases, the maximum limit for V and Nb is 0.100% p/p and for Ti, 0.150% p/p.

(3) For steels with a C content \ge 0.02% p/p, the maximum Ti content must be the lower value of 0.025% p/p or calculated by the formula 3.4N + 1.5S or 0.025%. (4) For materials with a thickness between 0.60mm < AND \le 0.70mm, the minimum elongation can be reduced by 2 units.

(5) Value measured in the transverse direction.

(6) For a thickness > 1.50mm, the r value must be reduced by 0.2 unit.

(7) Average value of test performed in three directions.(8) It can be guaranteed upon request.

(9) Measurement method: LE + Δ W + BH after a 2% deformation and a 175 °C heat treatment during 30 minutes.

MEDIUM-STRENGTH STEEL

This series include products that have high mechanical strength and good formability as their main characteristics. High mechanical strength is especially due to the hardening mechanism of solid solution and carbides precipitation obtained by the addition of carbon and manganese. Medium-strength steels are used by the automotive industry and, mainly, in civil construction.

						Chemical	Composition (%	5 p/p)				Mechanical F	Properties		
Standard	Grade	Coating	Thickness											Elongation	
Stanuaru	Grade	Coating	Range (mm)	с	Mn	AI	Р	S	Others	Tensile Test Direction	LE (MPa)	LR (MPa)	Thickness (mm)	BM (mm)	% min.
		G													
		GA	0.40 ~ 3.00	0.12 max.							230 min.	340 min.			
	USIGAL-GI-ZAR250	GI			0.70 max.										16
	USIGAL-GA-ZAR250	GA		0.15 max.							250 min.	360 min.			
	USIGAL-GI-ZAR280	GI	0.60 ~ 3.00												
Usiminas (USI)(6)	USIGAL-GA-ZAR280	GA		0.20 max.	0.80 max.	0.010 min.	0.060 max.	0,040 max.	-	Transversal	280 min.	400 min.	-	50	
	USIGAL-GI-ZAR320	GI													
	USIGAL-GA-ZAR320	GA	0.70	0.22 may							320 min.	390 min.			14
	USIGAL-GI-ZAR345	GI	0.70~3.00	0.25 max.	1.00 max.							120 .			
	USIGAL-GA-ZAR345	GA									345 min.	430 min.			
	SS 230 (1)	GI / GA	0.40 ~ 3.00						Cu: 0.250 max.		230 min.	310 min.			20
				0.20 max.					Ni: 0.200 max. Cr: 0.150 max.		255 min.	360 min.			18
ASTM A653	SS 255 (1)	GI / GA	JA 0.60 ~ 3.00 GA		1.35 max.	-	0.100 max.	0.040 max.	Mo: 0.060 max. V: 0.008 max. (2)	Longitudinal					
	SS 275 (1)	GI / GA	0.00 * 5.00	0.25 max.					Ti: 0.025 max. (2) (3)		275 min.	380 min.			16
	S220GD+Z	GI	0.40 ~ 3.00								220 min.	300 min.			20
	5220GD+2F	GA													
	\$250GD+Z										250 min.	330 min.			19
	\$280GD+21		0.60 ~ 3.00												
EN 10346 (4)	\$280GD+ZF	GA		0.20 max.	1.70 max.	-	0.100 max.	0.045 max.	Si: 0.60 max.	Longitudinal	280 min.	360 min.	(5)	80	18
	\$320GD+Z	GI													
	S320GD+ZF	GA									320 min.	390 min.			17
	S350GD+Z	GI	0.70 ~ 3.00												
	S350GD+ZF	GA									350 min.	420 min.			16
	SGC340										245 min.	340 min.			20
JIS G3302	SGC400	GI / GA	0.60 ~ 3.00	0.25 max.	1.70 max.	-	0.200 max.	0.050 max.	-	Transversal	295 min.	400 min.	-	50	18
	SGC440				2.00 max.						335 min.	440 min.			18
	3005								Cu: 0.200 max.		300 ~ 400	390 min.			24
SAE J2340		GI/GA	0.60 ~ 3.00	0.13 max.	-	-	0.100 max.	0.020 max.	NI: 0.200 max. Cr: 0.150 max.	Longitudinal			-	50	
	3405								100: 0.060 max.		340 ~ 440	440 min.			22

(1) There is no specification for the Al and N elements; however, their contents must be reported.

(2) For C levels equal to or less than 0.02%, V, Nb, or Ti, or a combination of these, is allowed for element stabilization. In these cases, the maximum limits for V and Nb shall be 0.100% and for Ti, 0.150%.

(3) For steels with C > 0.02% content, the maximum Ti content is to be less than can be 3.4N + 1.5s or 0.025%.
(4) For all grades applied to semi-finished products for Resistance Limit a range of 140 MPa is expected.

(5) For materials with thickness 0.50 < E ≤ 0,70, the minimum elongation can be reduced in 2 units. Thickness ≤ 0.50mm - reduction of 4 units. (6) Depending on the requested size, the material can be manufactured with addition of Nb and/or Ti elements, the material having microalloyed medium resistance steel characteristics.

REPHOSPHORIZED **MEDIUM-STRENGTH** STEEL

The main characteristic of the steels in this series is high mechanical strength and good drawability. Its high mechanical strength is especially due to the mechanism of hardening by solid solution obtained through the addition of phosphorus and manganese. Medium-strength steel is mainly used by the automotive industry.

							Chemical (Composition	(% p/p)				Me	chanical Propertie	25		
Standard	Grade	Coating	Thickness							Tanaila Taat				Elongation			
Junuara	Crude	couting	Range (mm)	C	Mn	Al	Р	S	Other	Direction	YS (MPa)	TS (MPa)	Thickness (mm)	MB (mm)	% mln.	r	n
Usiminas (USI)	USIGAL-GI-IFAR340 USIGAL-GA-IFAR340	GI GA	0.60 ~ 2.30	0.01 max.	0.90 max.	0.100 max.	0.08 max.	0.025 max.	Nb: 0.09 max. Ti: 0.12 max.	Transversal	160 min.	340 min.	-	50	31	(8)	(8)
	SHS 180 (1)								Cu: 0 200 may		180 min.	300 min.			32		
	SHS 210 (1)								Ni: 0.200 max.		210 min.	320 min.			30		
ASTM A653	SHS 240 (1) GI	GI/GA	GI/GA 0.60 ~ 2.30	0.12 max.	1.50 max.	-	0.120 max.	0.030 max.	Mo: 0.060 max.	Longitudinal	240 min.	340 min.	-	50	26	-	-
									Nb: 0.008 max. (2) Ti: 0.025 max. (2) (3)		280 min.	370 min.			24		
	SHS 300 (1)								11: 0.025 max. (2) (3)		300 min.	390 min.			22		
		GI													37	1.9 (7)	(-)
	HX160YD	GA									160 a 220	300 a 360			35	1.7 (7)	0.20(7)
		GI			0.70 max.		0.06 max.		Si: 0.20 max. (4)				(-)		34	1.7 (7)	()
EN 10346	HX180YD	GA	0.60 ~ 2.30	0.01 max.		0.100 max.		0.025 max.	ND: 0.09 max. Ti: 0.12 max.	Transversal	180 a 240	330 a 390	(5)	80	32	1.5 (7)	0.18(7)
		GI													34	1.5 (7)	1
	HX220YD	GA			0.90 max.		0.08 max.				220 a 280 3	340 a 420			32	1.3 (7)	0.17(7)

(1) There is no specification for the Si, Al, and N elements; however, their results may be reported. (2) For C contents $\leq 0.02\%$ p/p, V, Nb, or Ti, or combinations of these, can be used as stabilizing elements. In these cases, the maximum limit for V and Nb is 0.100% p/p and for Ti, 0.150% p/p. (3) For steels with a C content $\geq 0.02\%$ p/p, the maximum Ti content must be the lower value of 0.025% p/p or calculated by the formula 3.4N + 1.5S or 0.025%.

(5) For materials with a thickness between 0.50mm < AND \leq 0.70mm, the minimum elongation may be reduced by 2 units. For a thickness \leq 0.50mm, the reduction may be by 4 units.

(6) For materials with a thickness > 1.5 mm, the minimum r value must be reduced by 0.2 unit.
(7) Value measured in the transverse direction.
(8) They can be guaranteed upon request.

MEDIUM-AND HIGH-STRENGTH MICRO ALLOYED STEEL

This steel shows high mechanical strength associated with good ductility. Its high strength is obtained by the addition of alloy elements, such as titanium and/or niobium, which provide hardening due to the ferrite grain refinement.

This group of steel is applied in vehicle parts that do not require high drawability, such as structural or reinforcement parts. The high mechanical strength and low alloy can replace lower strength steels, allowing thickness reduction and/or strength gain of vehicle parts. On request, thicknesses of up to 3.00 mm.

						Chemica	al Composition (% p/p)	Mechanical Properties Others Tensile Test Direction LE (MPa) LR (MPa) Thickness (mm) BM (mm) .						
Standard	Grade	Coating	Thickness							Toncilo Toct				Elongation	
			Range (mm)	С	Mn	Al	Р	S	Others	Direction	LE (MPa)	LR (MPa)	Thickness (mm)	BM (mm)	% min.
Usiminas	USIGAL-GI-ZAR420 USIGAL-GA-ZAR420 USIGAL-GI-ZAR450	GI GA GI	0.70 - 2.00	0.20 max.	1.70 max.	0.10 max.	0.20 max.	0.040 max.	-	Transversal	420 min.	460 min.	_	50	16
	USIGAL-GI-ZAR450 USIGAL-GI-ZAR500 USIGAL-GA-ZAR500	GA GI GA	0.70~5.00	0.23 max.	2.00 max.						500 min.	530 min.			13
ASTM A653	HSLAS275 (1) HSLAS340 (1)	GI / GA GI / GA	0.70 ~ 3.00	0.20 max.	1.20 max.				Cu: 0.200 max. (2) Ni: 0.200 max. Cr: 0.150 max. Mo: 0.160 max.	Longitudinal	275 min. 340 min.	340 min. 410 min.			22 20
	HSLAS380 (1) HSLAS410 (1)	GI/GA GI/GA	0.70~5.00	0.15 max. 0.20 max.	1.35 max.			0.035 max.	V: 0.010 min. (3) Nb: 0.005 min. (3) Ti: 0.010 min. (3) (7):	Longitudinai	380 min. 410 min.	450 min. 480 min.	-	50	18
	HX260LAD+Z (4) HX260LAD+ZF (4)	GI GA			0.60 max.	0.015 min.					260 ~ 330	350 ~ 430			26 24
	HX300LAD+Z HX300LAD+ZF	GI GA			1 00 max	0.100 max.			Si: 0.50 max.	Turning	300 ~ 380	380 ~ 480			23
EN 10346	HX340LAD+Z HX340LAD+ZF	GA	0.70 ~ 3.00	0.11 max.	1.00 max.				Nb: 0.090 max.	Iransversal	340 ~ 420	410 ~ 510	(5)	80	19 19
	HX380LAD+ZF	GA GI			1.40 max.	0.015 min.	0.030 max.	0.025 max.			380 ~ 480	440 ~ 560			17 17
	HX420LAD+ZF	GA									420 ~ 520	470 ~ 590			15
SAE J2340	300Y (6) 340Y (6)	GI/GA GI/GA	0.70 ~ 3.00	0.13 max.	-	- 0.060 max. 0.015 max. 0.015 max. Cu: 0.200 max. Cr: 0.150 max. C		400 min. 440 min.		50	20				
	380Y (6) 420Y (6)	GI / GA GI / GA							Mo: 0.060 max.		380 ~ 480 420 ~ 520	480 min. 520 min.			18 16

(1) There is no specification for the P and N elements; however, their contents must be reported.
 (2) For HSLAS275 grade, there is no Cu content specification. However, its result must be reported.
 (3) For C contents less than or equal to 0.02% p/p, V, Nb or Ti, or a combination of these, can be used as stabilizing elements. In these cases, the maximum limit for V and Nb is 0.100% p/p and for Ti is 0.150% p/p.

(4) For HX260LAD+Z and HX260LAD+ZF grades, the maximum titanium content is 0.120% p/p.

33

(5) For materials with thickness of 0.50mm < E ≤ 0,70mm, the minimum elongation must be reduced in 2 units.
 (6) A minimum content of at least one of Nb, Ti or V elements of 0,005% p/p is specified.
 (7) For steels with C content ≥ 0.02% p/p, the maximum Ti content must be the lower of 0.025% p/p or calculated by the formula 3.4N + 1.5S or 0.025%.

DUAL PHASE STEEL

Dual phase is a name related to the steel's microstructure, which is predominantly made up of martensite islands (hard phase), dispersed in a soft ferrite matrix. The presence of these components and their respective volumetric fractions in the microstructure directly influences the mechanical properties of this class of steel. Such structure provides excellent ductility, allowing high strain hardening behavior and high strain ageing behavior (bake hardening effect).

Hot-dip galvanized dual phase steels are especially recommended for the automotive industry for structural and reinforcement parts, providing weight reduction through thickness reduction. They have exceptional impact absorption capacity due to their high ductility. Dual phase steels of lower strength can be used in the automotive industry for manufacturing closing panels, aiming higher indentation resistance.

					Ch	emical Compositi	ion (% p/p)				М	echanical Propert	ties		
Standard	Grade	Coating	Thickness										El	ongation	
Standard	Grade	couting	Range (mm)	с	Mn	AI	Р	S	Others	Direction	LE (MPa)	LR (MPa)	Thickness (mm)	BM (mm)	% min.
	USIGAL-GI-DP590 USIGAL-GA-DP590	GI GA	0.80 ~ 2.30						Si: 0.20 max. B: 0.006 max.		340 ~ 440	590 ~ 780	_		20
Usiminas	USIGAL-GI-DP780 USIGAL-GA-DP780	GI GA	0.80 * 2.50	0.23 max.	3.30 max.	0.010 min.	0.090 max.	0.015 max.	Cu: 0.200 max.	Transversal	380 ~ 580	780 ~ 900		50	
(03)	USIGAL-GI-DP980 (1) USIGAL-GA-DP980 (1)	GI	1.00 ~ 2.30								550 ~ 780	980~1130	-		10

ialvanized

COMPLEMENTARY INFORMATION **ON SALE ORDER**

SURFACE OUALITY

The surface quality of HDG products are defined by NBR 7008. In general, the following applications can be exemplified:

SURFACE 1: adequate for applications in exposed parts that have high surface aspect requirements.

SURFACE 2: adequate for less demanding applications as surface 1, also for exposed parts

SURFACE 3: normally indicated for applications with lower requirement of the steel, such as in nonexposed parts and general applications, depending on the application requirement of the product.

TYPE OF OILING

HDG steels are supplied oiled with conventional temporary protection oil, or with temporary prelubricant protective oil, which helps in the process of formation/stamping. According to the customer's application/need, different amounts of oil can be applied.

EDGE FINISHING Products can be supplied with or without sheared edges.

PACKING The type of packing for HDG products shall be defined according to the customers' needs.

DIMENSIONAL TOLERANCES Usiminas can offer HDG products with dimensional tolerance under NBR7013, international standards, or according to customer's specific requests. Consult the sales team for further information.

COIL INTERNAL DIAMETER The coils can be supplied with an internal diameter of 610 mm or 508 mm, on request.

USEFUL INFORMATION ON USAGE

AGING

Long storage time associated with elevated temperatures can alter the mechanical properties of certain products.

STORAGE AND SHIPPING

- Storage of coils or plate bundles should be made in proper locations, with the use of cradles or pallets in good condition, thus avoiding indenting that damage the coils and plates.
- Contact with water, especially sea water, during storage or transportation, can cause white and/or red rust in hot-dip galvanized products. Thus, one should always avoid handling of these products in the rain, and under conditions that may cause condensation. Preferably, the storage location should have low relative humidity (less than 60% is recommended), with good air circulation.
- If contact with water occurs, the products should immediately be dried and used.
- Damaged packing should be immediately repaired.

HANDLING DURING DRAWING OPERATIONS

- The plates should be carefully handled in such a way as to avoid occurrence of surface damage that impedes their application.
- The use of proper gloves is recommended when handling the plates.

PLEASE CONTACT US

SALES OFFICE

Belo Horizonte – MG

3011 Professor José Vieira de Mendonça Street Engenho Nogueira - Zip Code 31310-260 Phone: (31) 3499-8232 / (31) 3499-8500

São Paulo - SP

277 Do Café Avenue, tower A and 9º floor Ed. Centro Empresarial do Aço Vila Guarani - Zip Code 04311-900 Phone: (11) 5591-5200

Porto Alegre - RS

2350 Dos Estados Avenue Humaitá - Zip Code 90200-001 Phone: (51) 2125-5801

Cabo de Santo Agostinho - PE

Tronco Distribuidor Rodoviário Norte Avenue, Zl3 Complexo Industrial Suape - Zip Code 54590-000 Phone: (81) 3527-5400

Always do the best.

www.usiminas.com